Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

K. Ravikumar,^a* S. Selvanayagam,^b

T. Venkateshwar Goud,^c

1. Venkalesnwar Goud,

- P. Krishnaiah^c and
- Y. Venkateswarlu^c

^aLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, ^bDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cNatural Products Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail: ravikumar_iict@yahoo.co.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.104 Data-to-parameter ratio = 11.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, 4a,5,6,8a,9,9a-hexahydro-9a-hydroxy-4,4,7-trimethylnaphtho[2,3-b]furan-2(4H)-one, C₁₅H₂₀O₃, is a

A furodysinin lactone derivative from

the marine sponge Dysidea fragilis

4,4,7-trimethylnaphtho[2,3-*b*]furan-2(4*H*)-one, $C_{15}H_{20}O_3$, is a sesquiterpenoid isolated from the marine sponge *Dysidea fragilis*. The furodysinin lactone skeleton consists of two sixmembered rings, which adopt chair and half-chair conformations, and a furan ring. The molecules are arranged in a helical pattern through $O-H \cdots O$ hydrogen bonds.

Received 10 December 2003 Accepted 17 December 2003 Online 24 December 2003

Comment

In the course of a search for bioactive drugs from marine sponges, *Dysidea fragilis* (montagu) (family Dysideidae), which is widespread on the southeast coast of India, was selected as it has been reported that furodysinin lactone acts as a potent agonist to human leukotriene B4 receptor (Mong *et al.*, 1990). The isolation of furodysinin lactone was reported by Gorde & Cardellina (1984), and its relative stereochemistry was established, based on the sign of optical activity (Horton *et al.*, 1990). Spectroscopic analysis suggests that the title compound, (I), is a closely related derivative of furodysinin lactone. In order to establish the structure of (I), an X-ray analysis was undertaken and the results are presented here.

The structure of (I) with the atom-numbering scheme is shown in Fig. 1. The molecular framework of the furodysinin lactone consists of three fused rings, two six- and one five-

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

View of (I), showing 30% probability displacement ellipsoids.

Figure 2

Packing diagram viewed approximately along the b axis, showing the helical arrangement of the molecules. Dashed lines denote O-H···O hydrogen bonds.

membered. Bond lengths and angles in (I) are normal (Table 1).

The conformation of ring A is a half-chair, with asymmetry parameter $\Delta C_2(C5-C6) = 0.038$ (1) (Nardelli, 1983). Ring B adopts a chair conformation, with puckering parameters $q_2 =$ 0.031 (2) Å, $q_3 = 0.536$ (2) Å = Q_T , $\theta = 3.3$ (2)° (Cremer & Pople, 1975). Atoms C3 and C10 are displaced from the base plane C12/C11/C5/C4 of ring B by 0.577 (2) and -0.647 (1) Å, respectively. Methyl atoms C15 and C14 attached to C4 occupy axial and equatorial positions [C10-C5-C4-C15 = $-69.9(2)^{\circ}$ and $C10-C5-C4-C14 = 170.5(2)^{\circ}$]. The hydroxyl group attached to C12 in an axial position [C10- $C11-C12-O3 = 75.7 (2)^{\circ}$ is displaced by 1.279 (1) Å from the base plane C12/C11/C5/C4. The dihedral angle between the lactone ring and the base plane of ring B is 54.1 (1)°.

The crystal packing is stabilized by a network of intermolecular O-H···O hydrogen bonds involving the hydroxyl group and the carbonyl atom O2 (Table 2). These hydrogen bonds link the molecules in a helical fashion along the *a* axis (Fig. 2).

Experimental

An ethanol extract of Dysidea fragilis was chromatographed on a Sephadex LH-20 column (1:1 methanol-dichloromethane) followed by silica gel chromatography, eluting with hexane/ethyl acetate. Crystals of the title compound were obtained by slow evaporation of a hexane/acetone (1:1) solution.

Crystal data

C15H20O3 $M_{r} = 248.31$ Orthorhombic, $P2_12_12_1$ a = 7.1736 (7) Åb = 8.7391 (9) Åc = 21.301 (2) Å V = 1335.4 (2) Å³ Z = 4 $D_x = 1.235 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 4309 reflections $\theta = 2.5 - 27.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.24 \times 0.20 \times 0.15 \ \mathrm{mm}$

Data collection

Bruker SMART APEX CCD area-	1837 independent reflections
detector diffractometer	1705 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.020$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.0^{\circ}$
(SADABS; Sheldrick, 2001)	$h = -8 \rightarrow 9$
$T_{\min} = 0.980, \ T_{\max} = 0.987$	$k = -10 \rightarrow 11$
8149 measured reflections	$l = -27 \rightarrow 28$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.058P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.1311P]
$wR(F^2) = 0.104$	where $P = (F_0^2 + 2F_c^2)/3$

S = 1.131837 reflections 167 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.349 (2)	C3-C12	1.508 (2)
O1-C12	1.475 (2)	C4-C15	1.544 (3)
O2-C1	1.205 (2)	C5-C10	1.543 (2)
O3-C12	1.379 (2)	C8-C9	1.316 (3)
C1-C2	1.463 (3)	C11-C12	1.510 (2)
C2-C3	1.325 (2)		
O2-C1-O1	121.3 (2)	C8-C9-C10	124.8 (2)
O2-C1-C2	129.5 (2)	C9-C10-C5	110.4 (2)
C2-C3-C4	131.1 (2)	O3-C12-O1	108.2 (2)
C2-C3-C12	109.3 (2)	O3-C12-C11	109.4 (1)
C9-C8-C7	121.9 (2)	O3-C12-C3	115.2 (2)
C12-C3-C4-C15	66.8 (2)	C8-C9-C10-C5	19.8 (3)
C3-C4-C5-C10	49.5 (2)	C6-C5-C10-C9	-49.2(2)
C14-C4-C5-C10	170.5 (2)	C4-C5-C10-C11	-54.7(2)
C15-C4-C5-C10	-69.9(2)	C5-C10-C11-C12	55.1 (2)
C10-C5-C6-C7	61.4 (2)	C10-C11-C12-O3	75.7 (2)
C5-C6-C7-C8	-41.5(3)	C10-C11-C12-C3	-52.0(2)
C6-C7-C8-C9	10.6 (3)	C4-C3-C12-C11	54.8 (2)
C7-C8-C9-C10	0.2 (3)		

+ 0.1311P] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3\cdots O2^i$	0.82	2.00	2.812 (2)	174
G (1) (1) (1)	3			

Symmetry code: (i) $\frac{1}{2} + x, \frac{3}{2} - y, -z$.

The H atoms were positioned geometrically and treated as riding on their parent C and O atoms [C-H = 0.93-0.98 Å, O-H = 0.82 Å; $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$ for methyl H atoms and $1.2 U_{\rm eq}({\rm C})$ for other H atoms]. Due to the lack of significant anomalous scattering, the absolute configuration was not determined by X-ray diffraction and Friedel pairs were merged.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

References

- Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gorde, S. H. & Cardellina, H. J. (1984). J. Nat. Prod. 47, 76–83. Horton, P., Inman, W. D. & Crews, P. (1990). J. Nat. Prod. 53, 143–151.
- Mong, S., Votta, B., Sarau, H. M., Foley, J. J., Schmidt, D., Carte, B. K., Poehland, B. & Westley, J. (1990). Prostaglandins, 39, 89-97.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.